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ABSTRACT 

A numerical method is presented for solving two-dimensional viscous fiuid flow 
problems. Emphasis is placed on the formulation and solution of weak shock reflec- 
tions. Time-dependent Newtonian conservation equations are used without heat 
conduction. They are numerically integrated by a stable difference scheme to obtain 
asymptotically stationary solutions. Independent variables are transformed to reduce 
computation time. Numerical results are given for asymptotically stationary weak 
shock reflections. Reflected shock angles for both regular and Mach reflections obtained 
agree well with those given by shock-tube experiments. 

I. INTR~D~JOT~~N 

When a plane shock strikes a s,mooth rigid wall with small angle of incidence, 
it gives rise to a regular (two-shock) reflection as shown in Fig. 1. For large angle 
of incidence, an irregular and more complex type of reflection appears, known 
as the Mach (three-shock) reflection (Fig. 1). 

Von Neumann’s [l] two-shock theory works well for simple shock problems 
and agrees with Smith’s [2] experiments. Many authors [3]-[6] have numerically 
solved stationary shock-flow problems with artificial viscosity and no heat con- 
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AT(ll-1)1469 and by the National Science Foundation under Contract NSF-GP-4636. It is a 
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duction. Due to numerical difficulties, some of them [3]-[5] have integrated time- 
dependent equations describing the flow to obtain asymptotically stationary 
solution. Their results agree quite well with experimental data for simple shock 
problems and two-shock reflections. 

REGULAR REFLECTION MACH REFLECTION 

WALL WALL 

FIG. 1. Regular and Mach Reflections 

II-- _MACH SHOCK 

Unfortunately, for Mach reflections, no method seems to work. In particular, 
Von Neumann’s three-shock theory and various other numerical methods fail 
badly for Mach reflections with weak incident shocks. There is a wide discrep- 
ancy between the predicted shock-reflection angles and Smith’s shock-tube 
experimental results. 

Von Neumann’s theory used Rankine-Hugoniot equations locally in the 
neighborhood of the shock-intersection point. It did not work for weak Mach 
reflections presumably because the viscosity and downstream flow field were 
ignored. These small effects may be more significant when the incident shock 
becomes weak. Numerical methods failed presumably for the same reason. 

Our method for numerical solution of shock-reflection problems will be as 
follows. We shall proceed to numerically integrate the time-dependent differential 
equations on the assumption that the true viscosity terms should be retained. 
Because weak shocks are to be investigated, it is reasonable to assume that the 
viscosity coefficient is constant and also that the heat conduction terms can be 
neglected. 

In Section II, Newtonian conservation equations will be written in Lagrangian 
form. The time-dependent, non heat-conductive partial differential equations will 
be transformed into a streamline-like coordinate system in Section III. Numerical 
solution of two-dimensional viscous shock reflection problems together with 
stability condition will be given in Section IV. The basic numerical procedure is, 
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fashioned after the PIC method [5], to interpolate the flow variables at the fixed 
Eulerian mesh points after each Lagrangian time cycle. A graph consisting of 
data obtained from Von Neumann’s theory and our numerical solutions as com- 
pared to experiments will be given. Good agreement for weak shock reflections 
between our results and Smith’s experimental data will be demonstrated. 

II. DIFFERENTIAL EQUATIONSIN LAGRANGIAN FORM 

The theory of fluid flow that we will use is based on the Newtonian mechanics 
of a small body. In the following, we shall use a dot over a function to denote 
the Euler’s rule of differentiation: 

a .= -&+.l$+u”~ =$+u&, i= 1, 2, 
1 2 1 

and the summation convention. Furthermore, the notation of a comma followed 
by a subscript i means partial derivatives of functions with respect to xi. Using 
the assumptions made earlier, the time-dependent, two-dimensional, viscous equa- 
tions in Lagrangian form [7] can now be written as follows: 

(1) Continuity Equation 

P + w,i = 0, i= 1,2; 

(2) Momentum Equations 

e4 = L&i,j + uj,i) - %puk,dij - p&jl,j j== 1,2, 

where p is the coefficient of viscosity and S, is the Kronecker delta; 
(3) Energy Equation 

[ete + 4wi>T = Iu~j(ui,~ + uj,d - ibh,kui - wl,i - e(e + S~4q,~ 

where e is the specific internal energy. 

The fifth equation is simply the equation of state, 

p = (Y - lb, 

where y is the ratio of specific heats. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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III. EQUATIONS IN STREAMLINE-LIKE COORDINATE SYSTEM 

For stationary and pseudo-stationary flows, Taub [8] introduced a pair of in- 
dependent variables, s and y. For fixed time t, the curves s = constant are the 
streamlines of particles which have crossed a given curve, say y = 0, at times 
earlier than t and y represents the arc length that a particle has traveled along 
the curve s = constant, measured from y = 0. Since the family of streamlines 
carries most of the flow information, it is natural to use the streamlines as one 
of the fundamental coordinates in computation. 

In addition to the natural reason of using these coordinates, there are numerical 
advantages. The Eulerian “interpolation” formulas used after each Lagrangian 
time cycle will be simpler in this case. Also simplification of boundary conditions 
can save computation time quite appreciably. 

For time-dependent problems, the streamlines vary in time. This gives rise to 
a delicate question as to whether or not they can be used to define coordinates. 
Since we are dealing with asymptotically stationary problems, we propose to 
ignore the movements of streamlines in time. We shall still use the coordinates 
(s, y) defined by Taub in our numerical method. They will be referred to as the 
streamline-like coordinates, although streamlines do not exist in time-dependent 
problems in the strictest sense. 

Now let v2 = uiui be the magnitude of the velocity vector and (p + &z) be the 
inclination of the curves s = constant in the (x1, x,)-plane. Furthermore, let 
us introduce 11 and [ to be the parameters associated with the geometry of the 
coordinate system [9]. Using the differential identities given in [8] and differential 
relations needed for viscosity terms [9], we can transform the Eqs. (2.1)-(2.3) 
into the new coordinate system and obtain [9] 

(1) Continuity Equation 
p= -ey; (3.1) 

(2) Momentum Equations 

(3.2) 

(3.3) 
and 

(3) Energy Equation 

p=pu(y- 1) 
[ 
++v2+4v 

( 
ap dv a/9 dv ----- 
ay as as ay )I - YPYPY, (3.4) 
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where 

and we have used Eq. (2.4) to obtain Eq. (3.4). 

The differential equations for 7 and 5 are simply 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Now, Eqs. (3.1)-(3.8) form a set of eight first-order nonlinear partial differential 
equations in eight unknowns Q, II, /I, p, 9, ?,Y, q, and 5. They describe the two- 
dimensional viscous fluid flow phenomena in streamline-like coordinates when 
appropriate boundary conditions are specified. 

IV. NUMERICAL SOLUTION OF REGULAR AND MACH REFLECTIONS 

In this section, we shall describe a numerical procedure of solving shock- 
reflection problems. Detailed stability analysis of the procedure is given in [9]. 
To simplify the computation, we consider a two-dimensional rectangular box 
(Fig. 2) where uniform fluid comes in from the left and exits continuously at 
the right. The top and bottom boundaries are assumed rigid and smooth. The 
boundary-layer effects will be ignored completely. 

One way of generating a steady incident shock in the flow is to place a straight 
half-wedge with angle w on the bottom boundary of the box. Flow will then be 
disturbed starting at the tip of the wedge. If the incoming flow is supersonic and 
the wedge angle is small, a fairly straight attached shock will appear as shown in 
Fig. 2. Using this simple arrangement, desired incident shock angle a1 and its 
strength (the pressure ratio across the shock) 51 can easily be achieved by fixing 
the half-wedge angle w and the incoming-flow Mach number. 

In the present calculations, a square mesh of 50 x 25 is set up in the rectan- 
gular box in streamline-like coordinates. The standard second-order finite-dif- 
ference equations derivable from Eqs. (3.1)-(3.4) are applied at each mesh point 
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FIG. 2. Two-dimensional shock-reflection configuration. 

with uniform time-step dt and space-step Ah. (Throughout this section, we shall 
use, for each variable, the superscript n to denote the nth time-step and the sub- 
scripts 1 and m to denote the Zth mesh point on the mth streamline.) They can be 
written in the following form: 

4 vht2*?n - ?&/2,m 
+p 

_ P’E+1,* - PL,, 
Ah I 2Ah ’ (4.2) 

_ ,p11+1/2,m - P’Lll2,rn I hn P%-t1,m - PLm 1 P1,m+1 - PS,m-1 

Ah r9,m 2Ah e;m 2Ah 1 9 (4.3) 

and 

Pi% = Pl,m + dt{pb - l)[f (w’1,,)2 + @lJn)2 + 44,,Ib (“l*‘;$“l:- 

%n+l - %wl _ w,m+1 - PL-1 va1.m - %,?a 

2Ah 2Ah 2Ah )I _ yp3,,y3,m . (4 4) . 
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In order to keep uniform error in the difference equations, we use half-mesh values 
of q and ly in the corresponding difference quotients. These half-mesh values 
can be computed from Eqs. (3.5)-(3.6) as follows: 

v?+1,2,m = * wds+l,2,m - t~+1/2,m@/Yi+ll2,ml + vl”smA; unlsm 

and 

4+1/2,m = H4+1,m + v?,rn), 

~~,m+1/2 = Hqm+1 + V’1,rn)Y 

~,)l+l,2,m = BXl12.m+12flhBl+l12,m-l 

= m+1,,+1 + m,m+1 - B’E+1,m-1 - Pi,,-1 
4Ah 9 

and 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

tf%/)“l 
,m+1,2 = a1,1.,+l122d~-l,~+lia = R+l,m+l + shl.m4~%1,m+1 - &l,ms 

(4.12) 

Since Y’E-~~~,~ and ~l,~-r,~ are already available from previous calculations, 
we have 

YL = wi+1/2,m + VLl2,nl + yl?,nw2 + yirE,m4,2). (4.13) 

Similar expressions for half-mesh values of v can also be derived. As for the 
half-mesh and mesh-point values of 7 and 5, we numerically integrate Eqs. (3.7)- 
(3.8) along s = constant and get two simultaneous equations in r7a+I,z,m and 
Pi+ll2,m: 
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and 

With the values of ?&1,2,n2 and 5~-1iz,m. given by previous calculations, the solu- 
tion of Eqs. (4.10)-(4.11) can be written 

and 

(4.18) 

(4.19) 

We also have 

and 
r’E,m = Qb??+1/2,m + vi-ll2,9A (4.20) 

o,m = sm+l/2., + 5%1/2,?7J (4.21) 

Slightly more complicated expressions for T?,~+~,~ and Q,+l,2 can be derived 
by using the same method. 

Sin= Pl$, 6$?, P?,Z, and jtg are the intermediate flow variables of the Ith 
mesh point on the mth streamline at the (n + I)-time cycle, we need perform the 
interpolation process to combine them with the values of appropriate neighboring 
mesh point. The transport effect of each variable for asymptotically steady flow 
can thus be obtained. In our coordinates, this process is very simple. Since the 
mesh points are all moving unidirectionally from left to right along curves s = 
constant in the shock-reflection problem, it is only necessary to consider the 
following case. For fixed m and v?,, 2 0, the weighted linear interpolation for 
&it> f$-?t, t%%, and p$$ are performed according to the formulas 

egi = kgt:,, + BQY$, (4.22) 

VP',' = AV'j?;,, + I%?$, (4.23) 

,&it = A&$,a + B,-@$ , (4.24) 



TWO-DIMENSIONAL FLUID FLOW PROBLEMS 375 

and 

where 

A= anAt 
Ah - vyl,mAt + vq,,nAt’ 

and 

Ah - vq-l,,,At 
B = Ah - v’E+At + v”t,,At’ 

(4.25) 

(4.26) 

(4.27) 

The set of Equations (4.1)-(4.27) completely describes the numerical iteration 
procedure for two-dimensional viscous shock-reflection problems. The boundary 
conditions for the problem shown in Fig. 2 are thanks to our coordinate system, 
simply as follows. 

(1) Left side (uniform incoming flow) 

e&l% = e:,m 9 vt., = v:,m > t%n = &,?m Pbn = p;,,, 

~;ZI~,~ = 0, &a,m = 0 for m = 1, 2, . . . . M; 

(2) Right side (continuous outgoing flow) 

e2,m = elt-l,,, G,?n = vzt-1.m 3 f%,?n = t%,M 7 
p;,?n = Pnl-1.m for m = 1, 2, . . . . M; 

(3) Top side (rigid smooth wall) 

@%.M = @,M-1, v’E,M = v&l, ,&,, = 3’6 - fl,&1, 

p7.M = p%,M-l for 1 = 1, 2, . . . . L; 

(4) Bottom side (rigid smooth wall with straight wedge) 

c?l,l = e’Z,z, V’E,l = v1.2, Pi.1 = n - Pi.29 

@?,I = P%,z for 1= 1, 2, . . . . L; 

an 

for mesh points where the wedge lies. 

The angle 7~ appears in above conditions because we want to maintain zero 
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velocity component normal to the walls. In actual computation, the starting half 
wedge angle w should be taken small enough so that the inclined wedge face 
does not intersect any of the initially horizontal streamlines. It can be increased 
gradually after every few time cycles to achieve the desired final angle. 

For simplicity, we take the initial values at all mesh points to be uniform as 
follows : 

gm. = 1.0, ~7,~ = 1.0, /?v.,~ = in, for I = 1,2, . . . . L, m = 1,Z . . . . M. 

The value for initial pressure depends upon the incident shock strength Er and 
angle aI specified by the problem. Using oblique shock conditions [7], we have 

and 

MI = (1 + 4Ky - l)lrl(1/5‘1 - l))Wna&*, (4.28) 

~“I,wt = eP,d4,mWMr4~ (4.29) 

The choice of VI,, = 1.0 implies that the initial speed of sound Cr = l/Ml. 
But MI > 1 if & < 1, from Eq. (4.28). Thus we are guaranteed to have super- 
sonic incoming flow. The desired wedge angle o for generating an incident shock 
with angle czI can be calculated using the formula [7] 

MI2 sin2 aI - 1 1 M12(y + cos 2aI) + 2 ’ 
(4.30) 

Other constants used for all calculations in this work are 

y=1.4, ,u=O.Ol, L=50, M=25, 

dh(space-step) = 0.05, and dt(time-step) = 0.02, 

where At has been chosen to satisfy the stability conditions [9] 

At 5 (Aw2@y2@4r2 + q2 + 1)1-l 
and 

At I WYP 

(4.31) 

(4.32) 

The choice of computational constants in the present problem has little effect 
on the shock-reflection angles. They are chosen to maintain stability of the nu- 
merical scheme and to give reasonable computer outputs. For example, the con- 
stant ,u = 0.01 is obtained by equating the right-hand sides of conditions (4.31) 
and (4.32). 
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The main computer program is written in FORTRAN II language with inner 
iteration loop coded in ILLIAC II machine language. We test for stationary solution 
of a given shock-reflection problem by comparing all flow variables between 
every 40 time cycles. If the relative differences are found to be negligible, we stop 
the computation. The average number of time cycles required for stationary 
solution is about 600 which takes about 15 minutes of machine time. This in- 
cludes the time of starting computation from initially uniform flow with an in- 
clined wedge until flow becomes stationary and the time of writing flow data on 
a magnetic tape. 

The method of obtaining incident and reflected shock angles from our computer 
output is demonstrated in Fig. 3 for the case of 51 = 0.9, aI = 56.0°, and aa = 
60.8“. First we hand-draw constant-density lines on a computer-printed density- 
variations chart. The various smeared-out shock regions can be seen clearly 
from the sharp increases of densities in this chart of streamlines. In transplanting 
the same constant-density lines onto a computer-printed streamline chart in phys- 
ical space in rectangular coordinates, they become slightly curved. The average 
of the angles of constant-density curves measured at the reflected-shock region is 
the desired reflected-shock angle. The beginning of the incident- and the reflected- 
shock regions are recognized (see lower part of Fig. 3) by staying, say, 5 stream- 
lines away from the wall. This is to avoid the shock-interaction zone arising from 
the smeared-out effect in our numerical calculation. The loci from which aI 
and aR are-measured on each constant density curve are also shown in Fig. 3. 
The same technique was applied to velocity and pressure variation charts to verify 
the results. 

Some results of this work are shown in Fig. 4. For the incident shock strength 
51 = 0.9, we plot reflected shock angle oa versus given incident angle aI. (Due 
to difficulties encountered in displaying computer output, we did not obtain data 
for aI 2 67’.) The results obtained by our true viscosity model are in very good 
agreement with Smith’s data. The Rankine-Hugoniot conditions across the re- 
flected shocks are also satisfied with less than 2% error. More numerical data 
for 51 = 0.8 and 0.7 can be found in [9]. They too agree well with experimental 
results. In Fig. 4, we also give results predicted by Von Neumann’s [I] theories 
and numerical results with no explicit viscosity effect, i.e., set p = 0 in our com- 
putation (the shock regions are also smeared out in this case due to the interpolation 
process-the so-called implicit viscosity effect). (Numerical and experimental data 
points are fitted by 4th-degree least-square polynomials in the figure for easy 
comparison.) They do not agree as well in the Mach-reflection region as we can 
see. This leads us to believe that the true viscosity effect is not negligible for weak 
Mach-reflection problems. Another feature of the present method is that it gives 
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a faster technique for numerical solution of shock-reflection problems and it is 
directly applicable to stationary viscous fluid flow problems. 

In this work, we have numerically integrated the time-dependent viscous equa- 
tions to obtain asymptotically stationary solutions for weak-Mach-reflection 

----D-- NUMERICAL RESULTS 
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FIG. 4. a~ vs aI for & = 0.9. 

problems. We used streamline-like coordinates to simplify the needed interpola- 
tion process and the boundary conditions. The most significant of all, the addi- 
tion of true viscosity terms in the new coordinates did not complicate the numerical 
procedure, yet it gives much better results than any other method. Furthermore, 
we are also the first to analyze the stability of the two-dimensional difference 
scheme [9]. The stability condition (4.31) gives us the size of time-step when 
space-step is specified. The only difficulty encountered in the present problem 
was to choose an appropriate set of computational constants for numerical sta- 
bility and computer display of results. 

There are several ways to improve the efficiency of the present numerical scheme. 
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For shock-reflection problems, a stationary incident shock could be maintained 
in the two-dimensional computational region. This is because the generation of 
incident shocks by placing a wedge in a uniform flow turned out to be quite time- 
consuming. As for the iteration process itself, the rate of convergence may be in- 
creased by using appropriate relaxation schemes. For example, in treating asymp- 
totically stationary problems, the time is no longer physically meaningful because 
it is used in iteration to avoid numerical difficulties. We can consider variable 
optimum time-steps at each mesh point instead of a uniform time-step for the 
whole mesh. This local time-step may serve as a type of relaxation parameter to 
improve the convergence rate. 
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